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Abstract
This thesis introduces a novel approach to leveraging quantization to improve the effi-
ciency of training neural networks. Neural networks are successful but computationally
expensive learning systems that are trained with stochastic optimization algorithms on
large amounts of data. The noise in the stochastic training process was shown to be ben-
eficial for converging to network configurations that generalize well, which means they
provide good predictions for new data samples. Our motivation is to develop a quanti-
zation scheme that mimics the specific characteristics of this noise. We thus leverage a
stochastic quantization function that exhibits controllable noise statistics while induc-
ing sparsity on intermediate results during the training algorithm. This sparsity can
be exploited by computing efficient sparse matrix multiplications, which greatly reduce
the required operations and thus the computational cost of the training algorithm. We
prove that for training certain types of networks, uniform quantization with an additive
stochastic signal possesses the desired properties of controllable quantization noise and
high induced sparsity. Experiments on popular image classification tasks confirm the
theoretical properties of our method and show that it outperforms approaches with
deterministic quantization schemes by achieving better generalization-efficiency ratios.
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Zusammenfassung
Diese Arbeit stellt einen neuen Ansatz für effizientes Training von neuronalen Net-
zen durch den Einsatz von Quantisierung vor. Neuronale Netze sind erfolgreiche aber
rechenintensive Lernsysteme, die mit stochastischen Optimierungsalgorithmen auf großen
Datenmengen trainiert werden. Das stochastische Rauschen des Trainingsprozesses ist
nachweislich hilfreich bei der Konvergenz zu Netzwerkkonfigurationen die gut gener-
alisieren, das heißt gute Vorhersagen auf neuen Datensätzen treffen können. Diese
Eigenschaft gibt Anlass für die Entwicklung einer Quantisierungsstrategie, die die spez-
ifischen Charakteristiken dieses Rauschens nachbildet. Aus diesem Grund setzen wir
eine stochastische Quantisierungsfunktion ein, die kontrollierbare Rauschstatistiken in-
duzieren kann und gleichzeitig zu dünnbesetzten Matrizen im Trainingsalgorithmus
führt. Diese Dünnbesetzung kann von effizienten Matrixmultiplikationsalgorithmen
ausgenutzt werden um die erforderliche Anzahl an Operationen, und damit auch den
Rechenaufwand, des Trainingsalgorithmuses zu verringern. Wir beweisen, dass, für
gewisse Arten von neuronalen Netzen, gleichförmige Quantisierung mit additivem Störsig-
nal die gewünschten Eigenschaften von kontrollierbarem Quantisierungsrauschen und
hoher Dünnbesetzung erzielt. Experimente mit gängigen Bildklassifikationsproblemen
bestätigen die theoretischen Eigenschaften unserer Methode und zeigen außerdem, dass
die Methode Ansätze mit deterministischen Quantisierungsstrategien übertrifft, indem
sie bessere Verhältnisse zwischen Generalisierung und Effizienz erzielt.
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1 Introduction
Artificial neural networks are powerful machine learning systems for recognizing pat-
terns in large amounts of data. They became very popular through recent successes
in computer vision, language understanding and other areas of computer science [1].
For example, neural networks are used by digital assistants for speech recognition and
natural language processing, by e-commerce websites to make personalized recommen-
dations, and by self-driving cars to detect objects in their surroundings. Compared to
traditional machine learning algorithms, neural networks can handle raw input data
without the need for domain-specific feature engineering. However, in order to ex-
tract meaningful representations from raw data, neural networks usually require large
amounts of data. As a result, the training procedure is computationally very expen-
sive and requires a lot of energy. For example, training a single state of the art image
recognition model consumes approximately as much energy as an average household per
week. Therefore, in order to train these models on resource-constrained hardware more
efficient algorithms have to be designed. A lot of research is dedicated to make the
forward pass through the network, which means the computation of new predictions,
more efficient, however, there is less research focusing on a more efficient backward pass,
which is also involved during training. More efficient training routines would increase
the versatility of neural networks and enable new types of applications such as on-device
training for small-scale hardware devices as needed for the internet of things.

Neural networks are usually trained using gradient-based optimization methods.
This means that first a loss function is defined, which describes the prediction error
of the network. Then the derivatives of this loss function with respect to the network
parameters - the parameter gradients - are evaluated for the available training data
using the back propagation algorithm. Lastly, the network parameters are adjusted
according to the gradient information such that the prediction error is reduced. This
process is repeated until the prediction error stops decreasing. In order to increase the
efficiency of the training procedure we can leverage quantization techniques that can
be applied to reduce the computational cost of the arithmetic operations performed
by the back propagation algorithm. Quantization maps values from an input set to
a finite (typically smaller) output set and is often used to save memory, processing
power, and communication costs in digital systems. When applied to back propagation
quantization injects noise into the resulting gradients and might thus interfere with
the training process. Nevertheless, it was shown that using noisy gradient estimates to
optimize neural networks can improve the generalization of the resulting models. Upon
reviewing recent studies regarding different stochastic training methods we conclude
that these gradient estimates should be unbiased, which means that the noise is zero
in expectation, and that their noise variance is crucial for the generalization perfor-
mance. Existing approaches to using quantization during training use deterministic
quantization functions without theoretical guarantees on the statistical properties of
the gradient error. In this thesis, we introduce a novel way of leveraging stochastic
quantization to increase the efficiency of the gradient computation while maintaining
unbiased parameter gradients with controllable noise variance. Our research question is
whether stochastic quantization provides an advantage over deterministic quantization

1



1 INTRODUCTION

approaches and how the induced quantization noise impacts the training procedure.
More specifically, our idea is to leverage uniform quantization with an additional

stochastic noise signal, called dither, to compress the pre-activation gradients, which are
intermediate results of the back propagation algorithm. We can show that for certain
network architectures this specific quantization scheme induces a high degree of sparsity
in the quantized pre-activation gradients. This sparsity can then be exploited to reduce
the computational cost of the matrix multiplication operations in the back propagation
algorithm, which are responsible for up to 90% of the overall computation time of
the algorithm [2]. Since the pre-activation gradients are involved in two of three of
these matrix multiplications, our method can achieve high computational savings during
training. Furthermore, we will show that applying dithered uniform quantization to the
pre-activation gradients does indeed lead to the desired unbiased parameter gradients
with controllable noise variance.

The outline of this thesis is followed by chapter 2 where we discuss relevant back-
ground knowledge such as the back propagation algorithm for neural networks, how
sparse matrix multiplication can decrease computational cost, and the implications of
using noisy gradients for training neural networks. We then explore related work in the
field of efficient neural network training and how these approaches relate to our method
in chapter 3. Chapters 4 and 5 introduce dithered uniform quantization and how we can
leverage this stochastic quantization function in conjunction with sparse matrix mul-
tiplication to reduce the complexity of the back propagation algorithm while fulfilling
the desired statistical properties of the computed gradients. The experiments that we
conduct to verify these properties and compare our method to related approaches are
described in chapter 6. Finally in chapters 7 and 8 we summarize the work presented
in this thesis, discuss the implications of our findings, and present future directions of
research.
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2 Background
In this chapter, we discuss the different concepts required as background knowledge for
understanding Quantized Back Propagation (QBP) and the considerations behind it.
The topics presented here do not necessarily have an immediate connection but will
be unified later in chapter 5. We start with a description of the machine learning field
in general and how neural networks are trained using the back propagation algorithm.
Next, we show how matrix multiplications can be accelerated for sparse matrices with
many zero-valued entries. This is important because matrix multiplications make up
most of the computations during back propagation. In QBP matrix sparsity is obtained
by stochastic quantization. However, quantization injects noise into the calculations
and thus also into the result of the algorithm - the parameter gradients. At the end of
this chapter we will discuss how noise contained in the parameter gradients affects the
training procedure of neural networks.

2.1 Neural Networks and Deep Learning

In machine learning, a field of artificial intelligence, the goal is to design and apply
algorithms that can "learn" to solve specific tasks based on data - without being ex-
plicitly programmed how to solve them. These algorithms build models by recognizing
patterns in sample inputs that can then be used to make predictions for unseen data.
We can distinguish between supervised and unsupervised learning scenarios. Supervised
learning requires a "teacher" that presents sample inputs with their desired outputs,
called labels, and the algorithm is supposed to find the general input-output mapping.
Applications of supervised learning are classification tasks where inputs are assigned
one or multiple classes or regression tasks where inputs are assigned continuous values.
In unsupervised learning there are no labels and the algorithm is left to find structure
in the input data. An example application of unsupervised learning is clustering where
the inputs are assigned to groups which are not known beforehand. Artificial neural
networks, or simply neural networks, are biologically inspired machine learning systems
that have become very popular recently under the term deep learning [1]. The origins of
artificial neural networks go back as early as 1949 to Hebbian learning [3], which mimics
the adaption of neurons in the human brain during learning, and to the perceptron in
1958 [4], which is essentially a one-layered neural network that is applied to binary clas-
sification tasks. A neural network is a graph structure with nodes, which are referred to
as neurons, that are arranged in multiple layers and which exhibit real-valued numbers.
Each connection, also called synapse, weights the signal exhibited by a neuron and
transmits it to a higher-level neuron. The neuron activation is computed by applying
a function to the sum of its inputs, i.e. to the weighted sum of outputs of lower-level
neurons. This activation function is usually non-linear and the same for all neurons
in the network, except for the neurons in the last layer. The first layer of neurons
represents the inputs to the system, the last layer represents the system output and the
layers in between are called hidden layers and compute intermediate representations of
the data. By adjusting the weights of the connections, the network can be "trained" to
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2 BACKGROUND

produce desired output values. The structure of a fully-connected feed-forward neural
network, i.e. an acyclic graph with all units in one layer being connected to all units
in the next layer, is illustrated in figure 2.1. It was proven by the universal function

Figure 2.1: Fully-connected feed-forward neural network [5]

approximation theorem [6] that a feed-forward neural network with at least one hidden
layer can approximate every continuous function in the Euclidean space. However, the
theorem does not consider the trainabilty of such a network. In modern applications,
neural networks with many hidden layers - deep neural networks - are found to perform
better than shallow networks. For example, ResNets [7], which are among the most
successful network architectures for image recognition tasks nowadays, can include over
one hundred layers. There are different types of neural network architectures that
are usually applied depending on the type of input and output data. For example,
convolutional neural networks (CNNs), such as the aforementioned ResNets, are feed-
forward networks that implement convolution and pooling operations, and which are
most commonly applied to visual input for image or video recognition tasks because of
their weight-sharing and translational invariance properties. Recurrent neural networks
(RNNs) are cyclic networks that use an internal state to process temporal data which
are thus often applied to problems with sequential inputs such as text or speech. Dif-
ferent network types can also be combined. For example, CNNs often use convolutional
layers first and then fully-connected layers towards the end of the network. Also, in
automated image captioning a CNN is combined with a RNN in order to process visual
data and output text [8]. For the scope of this work however we will explicitly focus on
fully-connected layers.

In neural networks, like in most machine learning scenarios, we consider two phases
of the algorithm: Training the model and using it to make predictions. In the following
sections we will go into more details about both phases.

2.1.1 Making Predictions

In a fully-connected neural network, each neuron computes a weighted sum of the
outputs of all neurons from the previous layer. Then, to obtain the neuron’s output
- its activation value - an activation function f(·) is applied to the result of the sum.

4



2 BACKGROUND

Thus, for neuron i in layer l of the neural network the so called pre-activation and
activation values of the neuron are defined as

zli =

nl−1∑
j=1

W l
ija

l−1
j + bli, (2.1)

ali = f(zli). (2.2)

Here, zl is the vector of pre-activation values and al is the vector of activation values in
layer l with l = 0 being the inputs to the network, i.e. a0

i = xi. Nowadays, the rectified
linear unit (ReLU) [9]

f(x) = max(0, x) (2.3)

is the most popular activation function [1]. The bias unit bli can be thought of as an
additional neuron in the previous layer that always emits the value 1 and that has an
individual weight. The matrix W l ∈ IRnl×nl−1 represents the weights of the individual
connections between neurons in layer l and layer l−1 where nl is the number of neurons
in layer l. The weights and biases are the parameters of the model and get adjusted
during training phase. To make predictions an input vector x is propagated through the
network according to the equations given above until the output layer l = L is reached.
The network output is then given by aL = ŷ(x, θ) = ŷ where θ represents the vector of
all network parameters, i.e. weights and biases.

Notation remark. Throughout this thesis we use index l for the L layers of the
network, index i for the nl neurons in the respective layer, index j for the nl−1 neurons
in the previous layer, and index h for the nl+1 neurons in the next layer. Thus, W l

ij

describes the weight between neuron i in layer l and neuron j in layer l − 1. We use
indices i′, j′, l′ when iterating over other values of i, j or l respectively. Furthermore, as
we will see in the next subsection, we use index k when iterating over training samples.

2.1.2 Training the Network

To train a neural network we first have to define a loss function, also called cost or error
function. During training this loss function is evaluated based on the training data and
minimized by adjusting the network parameters. This process is repeated for a desired
number of iterations or until the computed loss is below a desired threshold. The loss
function is usually chosen based on the task that is to be solved and evaluated based
on a batch of training samples. For example, in regression, a squared, or quadratic, loss
function can be used, which measures the difference between the network output and
the label values:

l(y, ŷ) =

nL∑
i=1

(yi − ŷi)2. (2.4)

In classification, often the cross entropy loss function is used in conjunction with a
softmax [10] activation function in the last network layer. The softmax function is a
generalized logistic function where all entries are normalized such that they sum to one:

aLi =
exp zLi∑
i′ exp zLi′

. (2.5)
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2 BACKGROUND

It is different from other activations function in that it is applied over the whole vector
of pre-activations and not to every value individually. As a result, the last network
layer outputs a probability distribution over the available classes. The cross entropy
loss function [10] then measures the difference between the predicted distribution and
the desired class distribution, which is usually a vector of ones and zeros:

l(y, ŷ) = −
nL∑
i=1

yi log(ŷi). (2.6)

The loss function is then evaluated for every training sample and the result is averaged:

L(θ) =
1

N

N∑
k=1

l(y(k), ŷ(x(k), θ)). (2.7)

Neural networks are usually trained with gradient-based methods. This means the
loss function is minimized by evaluating its derivative with respect to the network
parameters, i.e. its gradient, and adjusting the parameter accordingly. We also call
this gradient the parameter gradient to distinguish it from gradients of the loss function
with respect to other variables. For gradient-based methods all activation functions and
the loss function have to be differentiable. To efficiently evaluate the loss gradient the
back propagation algorithm applied, which we will discuss in more detail in the next
section. Gradient descent algorithms are then used to adjust the network parameters
according to the computed derivatives and a given learning rate:

θi ←− θi − η
∂L(θ)

∂θi
. (2.8)

In regular gradient descent (GD), one would evaluate the loss function over all training
samples, as we defined it in equation 2.7, and use the resulting gradient to adjust the
network parameters. However, for most modern applications with large data sets this is
unfeasible. Therefore, stochastic gradients descent (SGD) is used, which estimates the
loss function and its gradient based on a relatively small "batch" of training samples.

L̃(θ) =
1

m

m∑
k=1

l(y(k), ŷ(x(k), θ)) (2.9)

SGD variants therefor work very well for a wide variety of deep learning problems and
are used by most practitioners [1, 11, 12].

Notation remark. From now on index k denotes the current sample from a batch
with m training samples.

2.2 Back Propagation

Back propagation [13] is an algorithm to efficiently evaluate the derivatives of the loss
function with respect to the network parameters for the given input data. Since neural
networks apply elementary arithmetic operations and activation functions sequentially,
the chain rule can be applied repeatedly in order to calculate the corresponding deriva-
tives. Back propagation is a special case of automatic differentiation and is thus faster
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and more accurate than symbolic or numerical differentiation. In neural networks, the
term back propagation of errors is sometimes used because the error, which is calculated
from the network output using the loss function, is propagated through the network
in order to evaluate the partial derivatives of the loss function with respect to the pa-
rameters in the individual layers. The back propagation algorithm consists of three
steps.

1. Forward propagation of the inputs through the network to obtain the outputs
(forward pass).

2. Calculation of the error using the loss function.

3. Backward propagation of the error through the network to obtain the partial
derivatives (backward pass).

So far we have discussed how to make predictions, i.e. to forward propagate input data
through the network, and what loss functions can be used to evaluate the prediction
error. To efficiently evaluate the gradient, the back propagation algorithm leverages
principles from dynamic programming. During the backward pass the algorithm iterates
through the layers from the last to the first layer. In each layer, the cached pre-activation
and activation values that were computed in the forward pass are then used to compute
the local error for the neurons. To better understand how the local errors are computed
in each layer and before introducing a vectorized implementation of this algorithm, we
first derive the derivatives of the loss function symbolically.

2.2.1 Partial Derivatives

To calculate the partial derivative of the loss function with respect to the weights of a
fully-connected neural network, we first apply the chain rule to expand the calculation
of the loss derivative with respect to a single weight:

∂L
∂W l

ij

=
∂L
∂ali

∂ali
∂zli

∂zli
∂W l

ij

. (2.10)

The derivative of the pre-activation with respect to the weights and the derivative of
the activation with respect to the pre-activation are straightforward:

∂zli
∂W l

ij

=
∂

∂W l
ij

(
∑
j′

W l
ij′a

l−1
j′ + bli) = al−1

j (2.11)

and
∂ali
∂zli

=
∂f(zli)

∂zli
= f ′(zli). (2.12)

For the last layer, the derivative is determined by the choice of loss function:

∂L
∂ali

=
∂L
∂ŷi

for l = L. (2.13)

For a lower layer, however, the derivative is less obvious. Since neurons in layer l + 1,
which all receive input from neuron i in layer l, are inputs to L, we need to take the

7
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total derivative, which is the sum of all partial derivatives with respect to the individual
inputs, i.e. to all neurons in layer l + 1:

∂L
∂ali

=
∑
h

∂L
∂al+1

h

∂al+1
h

∂zl+1
h

∂zl+1
h

∂ali
for l < L. (2.14)

We can now formulate the derivative of the loss with respect to a single weight in terms
of "local errors" δ which are computed recursively:

∂L
∂W l

ij

= δlia
l−1
j (2.15)

with

δli =
∂L
∂ali

∂ali
∂zli

=


∂L
∂ŷ
f ′(zli), if l = L∑

h

δl+1
h W l+1

hi f
′(zli), otherwise.

(2.16)

which represents the propagation of errors through the network. The partial derivative
of the loss function with respect to the bias is simply

∂L
∂bli

=
∂L
∂ali

∂ali
∂zli

∂zli
∂bli

= δli. (2.17)

In the next subsection, we describe how the forward pass and the backward pass,
i.e. the evaluation of these derivatives, can be vectorized and implemented layer-wise.

2.2.2 Vectorization

To describe the implementation of the back propagation algorithm, we first express
the forward and backward pass in terms of vectors and matrices. We slightly change
our notation to accommodate the evaluation of the loss function and its gradient for
multiple data samples in one step. We refer to the the size of the batch of training
samples that are propagated concurrently as m. Then, the input to the network is not
a vector anymore but a matrix x ∈ IR0×m. Therefore, zl, al ∈ IRnl×m represent the
pre-activation and activation matrices. The activation function f(·) is applied to every
element of the matrix independently. We denote the matrix of partial derivatives of the
loss function with respect to the pre-activation and activation values evaluated for the
single input samples as follows:

∂L
∂zlij

= dzlij,
∂L
∂alij

= dalij. (2.18)

We will refer to these matrices as the pre-activation and activation gradients. Similarly,
the weight and bias gradients are given by

∂L
∂W l

ij

= dW l
ij,

∂L
∂blij

= dblij. (2.19)
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Using this new notation, the vectorized forward pass is defined as

zl = W lal−1 + bl 1T , (2.20)
al = f(zl) (2.21)

and correspondingly, the vectorized backward pass is given by

dzl = dal � f ′(zl), (2.22)
dW l = dzl(al−1)T , (2.23)
dbl = dzl 1, (2.24)

dal−1 = (W l)Tdzl. (2.25)

with � denoting the element-wise product, and the one-vector 1 ∈ 1
m. Note that

the local errors δl that we described in the last subsection are represented here as the
pre-activation gradients dzl.

As we can see, the forward and backward pass can be computed using only element-
wise addition and multiplication, matrix-vector and matrix-matrix multiplications, and
element-wise application of the activation function. There are many software libraries
for the efficient implementation of these linear algebra routines which can be lever-
aged for training neural networks. For example, Basic Linear Algebra Subroutines
(BLAS) [14] is a collection of common linear algebra operations with multiple imple-
mentations which are leveraged in higher-level frameworks. Most software frameworks
for deep learning, such as Caffe [15], PyTorch [16] and TensorFlow [17] build on these
implementations to expose programming interfaces for training neural networks.

2.2.3 Computational Cost

Asymptotically, the total number of operations involved in the back propagation al-
gorithm is dominated by the matrix multiplication operation. All other arithmetic
operations are element-wise addition or multiplication. Thus, we approximate the cost
of back propagation by the number of operations involved in the matrix multiplications.
In this work, we focus on reducing this number of operations in order to reduce the cost
of training neural networks.

Generally, when multiplying a matrix A with a vector x the values in the output
vector y are obtained by computing inner products between the row vectors in A and
x:

yi =
∑
j

Aijxj (2.26)

As a result, for a matrix-vector multiplication between A ∈ Rm×n and x ∈ Rn there are
mn multiplication and accumulation (MAC) operations needed. Matrix-vector multi-
plication can easily be extended to matrix-matrix multiplication because for the latter
multiple matrix-vector multiplications have to be performed, namely as many as the
right matrix has columns:

Cij =
∑
k

AikBkj (2.27)

Therefore, a matrix-matrix multiplication between A ∈ Rm×n and B ∈ Rn×p requires
O(mnp) MAC operations.
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Since all of the three matrix multiplications in the forward and backward pass (see
equations 2.20, 2.23 and 2.25) have the same input dimensionalities, we can denote the
cost of back propagation as

EBP = O(nlnl−1m). (2.28)

In the next section we will discuss how some of these MAC operations can be omitted
by exploiting the sparsity of the involved matrices.

In order to estimate the energy cost of training neural networks one can compare
the power usage of a modern hardware accelerator and the training time of a state-of-
the-art image recognition model. The popular NVIDIA Tesla P100 GPU accelerator
consumes up to 250W1, ignoring the memory consumption of other necessary hardware
like CPU, main memory, etc. Training a ResNet on a large image dataset for object
recognition takes either around 29 hours on eight such accelerators or one hour on 256
accelerators [18], which both results in an energy consumption of approximately 60 kWh.
As an interesting fact, the energy cost of this training procedure roughly corresponds to
a household’s weekly energy budget, assuming a yearly energy consumption of around
3000 kWh for average housholds in Germany2.

2.3 Sparse Matrix Multiplication

As described before, in this work we want to explore how to reduce the computational
cost of training neural networks. So far, we have described the training procedure and
the back propagation algorithm and its complexity. In order to reduce this complexity
QBP applies a quantization scheme that sparsifies the pre-activation gradients in the
backward pass before they are used to perform the matrix multiplications defined in
equations 2.23 and 2.25. In this section, we will discuss how one can exploit this
sparsity property to reduce the computational cost of matrix multiplications. The
reduced cost of the matrix multiplications then leads to a overall reduced cost of the
back propagation algorithm. The memory formats and algorithms presented here are
taken from the source code of SciPy [19], a popular open-source software library for
scientific computing.

As discussed in the previous section, multiplying the matrices A ∈ Rm×n and B ∈
Rn×p requires O(mnp) MAC operations. If one of the matrices is known to be sparse,
i.e. exhibits a high ratio of zero-valued elements, the matrix multiplication can be
sped up. Obviously, we do not need to perform operations on matrix elements that
are zero. Therefore, when multiplying a sparse matrix S ∈ Rm×n with ||S||0 non-
zero elements and a dense matrix B ∈ Rn×p, we only need to perform ||S||0 p MAC
operations. Usually, matrices are represented in memory as two-dimensional arrays
and are then traversed sequentially by the naive matrix multiplication algorithm. As
a result, the algorithm would iterate through all elements in the sparse matrix and
thus not achieve reduced time complexity. In order to only iterate and operate on non-
zero entries we first need to convert the sparse matrix to a different memory format.
There are many memory formats for sparse matrices such as dictionary of keys (DOK),

1https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
2https://www.destatis.de/DE/ZahlenFakten/GesamtwirtschaftUmwelt/Umwelt/

UmweltoekonomischeGesamtrechnungen/MaterialEnergiefluesse/Tabellen/
StromverbrauchHaushalte.html
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lists of lists (LIL), coordinate list (COO), compressed sparse row (CSR), compressed
sparse column (CSC), etc. They all have advantages and disadvantages. For example,
DOK, LIL and COO are easier to construct but CSR and CSC allow for faster matrix-
vector products. The COO format is the most straightforward one because it is just a
coordinate representation of the non-zero elements. It contains three arrays with the
same length: Row, column and data. The row and column arrays represent the row-
column coordinate tuples of the non-zero elements and the data array represents the
corresponding values. A COO matrix is easy to construct because the source matrix just
has to be iterated while filling the three arrays for every non-zero element. However, the
CSR and CSC formats are more suitable for efficient matrix multiplication algorithms.
These formats are similar to COO but compress the row, or column, array for faster
row, or column, access.

For the CSR format, the data and column array are kept as in COO. The row
array will be compressed - hence the name - such that it stores the number of non-zero
elements in the single rows cumulatively. More specifically, the first entry in the row
array is r[0] = 0. Then, r[i+ 1] stores the position of the first non-zero element of row
i in the data array s. As a result, the difference between adjacent entries in the row
array represent the number of non-zero elements in each matrix row. For example, for
the matrix

S =

0 1 0
0 0 0
2 0 3


the three arrays would be given by

data = [1, 2, 3]

column = [1, 0, 2]

row = [0, 1, 1, 3].

Now, one can efficiently compute matrix-vector products by iterating through the row
array, as described in algorithm 1. Figure 2.2 illustrates the computations of this

input : CSR matrix S ∈ Rm×n with data, row and column arrays s, r and c,
and vector v ∈ Rn with data array v

output: vector y = Sv

for i← 0 to m− 1 do
v[i]← 0;
for j ← r[i] to r[i+ 1]− 1 do

v[i]← v[i] + s[j]v[c[j]];
end

end
Algorithm 1: Matrix-vector product for sparse matrix in CSR format and dense
vector

algorithm. As we can see, using the compressed row format, for every row we only
iterate through the columns of the sparse matrix that have non-zero elements. Since,
in total, this is limited by the overall number of non-zero entries in the matrix, or the
number of rows, the time complexity of this algorithm is O(||S||0 +m).

11
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Figure 2.2: Multiplication of a CSR matrix (left) or a CSC matrix (right) with a dense
vector. Figures from [20].

When we include the construction of the sparse memory format, which has complex-
ity O(mn), then there is no advantage in performing the sparse matrix multiplication
over a regular matrix multiplication. However, when we extend this algorithm to mul-
tiplication of a sparse matrix and a dense matrix, the complexity can be lower than for
the naive matrix-matrix multiplication algorithm. We can extend the algorithm from
above to multiplying the sparse matrix S with a dense matrix B ∈ Rn×p by replacing
the instruction in the inner loop with another loop over the p columns of B to compute
a row of the result matrix using the non-zero elements of the current row of S. The
run-time of this adapted algorithm is

ECSR(SB) = O(||S||0p+mp), (2.29)

where mp results from the fact that we need to visit every output element once in order
to at least assign it the zero value. We can also adapt this algorithm to when S is
formatted using CSC which results in a slightly worse theoretical run-time of

ECSC(SB) = O(||S||0p+mp+ n). (2.30)

The additional n summand comes from the fact that we have to iterate over the columns
of the CSC matrix. Algorithm 1 can also be adapted to the case where the sparse matrix
is the right argument of the matrix multiplication. The complexity for multiplying a
dense matrix C ∈ Rq×m with S is given as

ECSC(CS) = O(||S||0q + nq) (2.31)

given S is formatted as CSC, and

ECSR(CS) = O(||S||0q + nq +m) (2.32)

for the CSR memory format. In this case, CSC is the better choice. We will see in
chapter 5 how the computational benefits of sparse matrix multiplication can be applied
to the back propagation algorithm.
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2.4 Noisy Parameter Gradients

So far we have described how to train neural networks and shown that the back propa-
gation algorithm for fully-connected networks relies heavily on matrix multiplications.
In the last section, we have also discussed how sparse matrices can reduce the compu-
tational cost of matrix multiplications. In order to leverage this computational benefit
we can make use of a sparsifying quantization scheme during the back propagation al-
gorithm, as we will describe in chapter 5. We will use a stochastic quantization function
with controllable statistical properties. However, stochastic quantization applied to the
back propagation algorithm introduces noise into the resulting parameter gradients. In
this section we discuss the general implications of using noisy parameter gradients for
training neural networks.

One could argue that the noise in the gradient signal might hinder the gradient-
based optimization. The noisy gradients do not represent the full information of the
original gradient directions. Thus, the gradient-based training procedure might take
longer to converge and potentially converge to worse solutions. Despite this, gradient
noise can also be beneficial to the optimization procedure and the resulting network con-
figurations. The most prominent example for training with noisy gradients is stochastic
gradient descent. As discussed in subsection 2.1.2, it evaluates the gradient based on
a subset of the training data. This results in a noisy estimate of the true gradient
computed by regular gradient descent. The gradient estimate is unbiased since in ex-
pectation it equals to the true gradient.

∇L̃ = ∇L+ ε with E[ε] = 0 (2.33)

While the main motivation for using SGD over GD for training neural networks is
its feasibility for large data sets, it was also shown that SGD converges faster and to
better solutions [21]. Note that in machine learning the training procedure minimizes
the prediction error on the training samples - the empirical loss - while the quality of
the resulting solution is measured by its prediction error on new data samples - its
generalization performance. It is not entirely clear why solutions found by SGD lead to
better generalization performance than GD. There is however evidence that the noise
characteristics in the parameter gradients play an important role.

Training neural networks corresponds to finding local minima in a highly non-convex
optimization landscape. It was shown that noise in SGD can help to escape saddle
points [22, 23] and lead to local minima that generalize better [24, 25]. One hypothesis
to why SGD finds these superior minima is that the noise drives the optimization away
from "sharp" local minima and towards "flat", or "broad", minima [21, 26, 27]. Flat
minima for which the eigenvalues of the Hessian matrix of the loss function are small
are conjectured to generalize better [21, 28–30]. For flat minima, small changes in the
network configuration do not result in a drastically different empirical loss. Thus, the
intuition is that these solutions correspond to models that overfit less to the training
data. This means that instead of memorizing the specifics of the training data they
recognized patterns that can be used to achieve good generalization on new data. The
hypothesis of gradient noise leading to flat minima which generalize better would also
explain why deeper over-parameterized networks with increased model complexity do
not necessarily lead to more overfitting [26], which is what classical learning theory
would predict. Since the gradient in SGD drives the optimization towards deep minima

13



2 BACKGROUND

and the noise drives it towards flat minima, one could say that the amount of noise
influences the speed of the optimization and the quality of the solutions. Recently, it has
been proposed that SGD has a general "noise scale" that is approximately η N/B where
η is the learning rate, N is the number of training samples and B is the batch size [31].
Increasing the batch size leads to a better estimation of the original gradient and thus
to less noise. A higher learning rate, however, scales up the noise contained in the
gradients and thus leads to a larger overall noise scale. This matches with the general
knowledge that the choice of learning rate and batch size are important hyperparameters
for finding solutions that generalize well, and also coincides with findings that the right
learning rate schedule is crucial for escaping bad local minima [32]. They also propose
that due to the central limit theorem the gradient noise induced by SGD is unbiased
Gaussian noise with unknown variance.

So far we have established that the noise contained in the gradient estimates com-
puted by SGD might be the reason for the good generalization performance of its so-
lutions and thus its success in training neural networks. Additionally, there have been
findings that adding artificial Gaussian noise to the parameter gradients computed by
SGD, which increases the noise scale, can further improve the generalization perfor-
mance of the resulting models [26, 33, 34]. Also, gradient noise can be used to view
stochastic gradient-based optimization as a form of approximate Bayesian posterior
sampling. For example, Stochastic Gradient Langevin Dynamics (SGLD) [33] describes
a way of adding unbiased Gaussian noise with decaying variance to the parameter gra-
dients such that gradient iterates converge to samples from the true posterior over the
network parameters. This posterior distribution captures the uncertainty over the pa-
rameters and thus sampling from it yields models that are less prone to overfitting.
However, for highly non-convex optimization landscapes, such as for neural networks,
adding uncorrelated Gaussian noise does not reflect the different noise sensitivities of the
individual parameters. Thus, the variance of the added noise has to be pre-conditioned
to the curvature of the optimization landscape [35, 36]. These Bayesian approaches of
approximating a posterior distribution over the model parameters have not yet outper-
formed simpler noise-based regularization heuristics such as dropout [37], which also
lead to solutions with better generalization performance. However, Bayesian inference
offers useful tools for the theoretical analysis of the role of noise in stochastic opti-
mization. Also, the additional noise described by SGLD was applied in a non-Bayesian
fashion to regular SGD and was shown to sometimes increase the stability of training
complex neural networks [34]. We can conclude again that unbiased Gaussian noise
with appropriate variance is helpful to converging to networks that generalize well.

In conclusion, we conjecture that SGD is so successful in training neural networks
that generalize well because it induces unbiased Gaussian noise with appropriate pre-
conditioning. This means, it adapts the noise variance of the parameters in a way that’s
beneficial for the convergence to good solutions. Since our goal is to use quantization
during back propagation, which also adds noise the the gradients, in this work, we are
looking for a quantization scheme that induces gradient noise which exhibits similar
properties as the noise induced by SGD. Therefore, our proposed method produces
unbiased gradient estimates that have controllable variance. As a result, the method
can be adjusted to achieve the optimal noise scale and thus the best trade-off between
compression and generalization performance.
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3 Related Work
Surprisingly, there is not a lot of previous work on more efficient neural network training.
One approach to this problem is precision quantization [38–51]. Here, quantization is
used to transform activation, weight, and gradient values from a regular single-precision
floating point format to different compressed representations. In these new representa-
tions, multiplications and addition operations can be conducted more efficiently. For
example, [38] were one of the first to use a low-bit fixed-point format with dynamic scal-
ing to represent the variables in the back propagation algorithm. Later approaches even
used binary weights and activations to replace arithmetic with logical operations [40–
42]. However, the gradient values still need to be represented with high precision. This
is improved in [44, 45] by showing that also low-bit gradient representations are feasi-
ble. Most of the approaches reviewed so far cannot be applied to commodity hardware.
The authors propose custom hardware designs to leverage the low-bit representations
for efficient computation. Furthermore, the proposed quantization heuristics are not
theoretically motivated and only verified experimentally. It is not clear how the in-
duced error on the weight gradients is defined and how it impacts the generalization
performance.

In contrast, [52] and [53] propose stochastic quantization techniques for efficient
communication in distributed training and also provide theoretical convergence guar-
antees. They leverage a sparsifying quantization scheme that is unbiased and leads to a
bounded norm of the gradient vectors. Both approaches first compute the full-precision
parameter gradients before quantization. Our work, however, focuses on the efficient
approximation of the parameter gradients in order to save computation and is thus
orthogonal to distributed scenarios.

We found two studies that, similar to our work, explore the use of efficient approxi-
mations to the matrix multiplications in the back propagation algorithm. [54] shrink the
relevant matrices by column-row-sampling [55] or a heuristic variation thereof. Column-
row-sampling selects an optimal subset of column-row pairs from two matrices such that
the matrix multiplication of the shrunken matrices is an unbiased estimation of the orig-
inal matrix product with bounded error norm. Using an efficient sampling heuristic,
this approach achieves up to 80% reduced computation but the authors provide no anal-
ysis of the induced noise variance contained the weight gradients and its impact on the
generalization performance. The group sparsity induced by column-row-sampling dur-
ing training is a special case of our method of using quantization to induce sparsity on
all matrix elements. The meProp algorithm [2] is the work most closely related to ours
and describes how to sparsify the pre-activation gradients and leverage sparse matrix
multiplications for a more efficient backward pass. Their top-k quantization algorithm
selects the k elements with the largest magnitude from every pre-activation gradient
vector that corresponds to a single batch sample. Since this quantization function is
deterministic and operates on vectors, it results in a biased quantization error that is
correlated among the vector elements and has no theoretical bounds. In this thesis, we
show that a stochastic quantization function applied element-wise to the pre-activation
gradients can overcome these limitations, describe statistical properties of the method
error and achieve better generalization-compression ratios than meProp.
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4 Dithered Uniform Quantization
In the last two chapters we discussed the background topics for our goal of increasing
the efficiency of neural network training and existing approaches to this problem. For
Quantized Back Propagation our goal is to develop a method that computes compu-
tationally cheaper parameter gradient approximations that still lead to good solutions.
As discussed in section 2.4, we want our method to produce gradient estimates that are
unbiased and have controllable noise variance. As we will show in the next chapter, in
order to fulfill these desired properties we require a stochastic quantization scheme that
is unbiased, has controllable error variance, and uncorrelated quantization errors for
distinct inputs. It also needs to induce sparsity, which can then be exploited to reduce
the computational cost of subsequent sparse matrix multiplications. In this chapter we
introduce a quantization method that fulfills all of the above requirements - dithered
uniform quantization. The concepts discussed here are leveraged in chapter 5 for the
design and analysis of the QBP algorithm. Note that in this chapter we rely heavily on
early work by Schuchman [56] and reviews by Wannaker, Lipshitz and Vanderkooy [57–
59] regarding the theoretical properties of using dither signals in uniform quantization.
Before explaining the use of dither signals and their effects on the quantization error,
we first introduce regular, undithered uniform quantization.

4.1 Uniform Quantization

Quantization can be defined as a surjective map from a set of real-valued, possibly
continuous elements to another real-valued set which is finite and has lower cardinality.
It forms the basis of data encoding, which partially discards information to obtain
reduced size for data storing, handling and transmitting. Uniform quantization is a
particular type of quantization function which was originally introduced for analog-to-
digital conversions of audio signals. The function rounds a given value to its nearest
quantization point. These quantization points are evenly distributed along the input
dimension with a distance equal to the quantization step size. For instance, a mid-tread
uniform quantization function is defined as follows1:

Q(x) = ∆b x
∆

+
1

2
c (4.1)

where x is an input signal and ∆ is the quantization step size. The quantization
function can be separated into two stages. The classification stage, or also called forward
quantization or encoding, which rounds the input value to the next quantization index:

i = b x
∆

+
1

2
c. (4.2)

And the reconstruction stage, or also called inverse quantization or decoding, that scales
the quantization index by the step size:

y = ∆i. (4.3)
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Regular uniform quantization and other deterministic quantization functions such
as the top-k algorithm from [2] result in a deterministic quantization error

q(x) = Q(x)− x (4.4)

that is fully dependent on the input signal. This means that there is a deterministic
mapping from the distinct input signals to their corresponding quantization errors. As
a result, for distinct inputs the quantization error is not zero in expectation and we
can therefore say that the quantization function is biased. The left plot in figure 4.1
illustrates the deterministic quantization error of uniform quantization, which follows a
sawtooth wave due to the rounding function. Although the quantization error is input-
dependent, the classical model of quantization [60] states that with a small step size
relative to the input distribution the bias in the quantization error can be neglected
and the error can be modeled as form of additive, unbiased noise. However, when the
quantization step size is larger, the error’s input-dependence can result in a significant
bias. Luckily, undithered uniform quantization, as we introduced it here, can be turned
into a stochastic quantization function using a dither signal. As a result, one can
analyze the statistical moments of the quantization error.
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Figure 4.1: Quantization error for uniform quantization without dither signal (left) and
with dither signal (right).

4.2 Non-Subtractive Dither

Dither describes a noise signal that is intentionally added to the input of the quanti-
zation function to randomize the induced quantization error. This is illustrated by the
right plot in figure 4.1. Using a dither signal we can model the output and the total
error of the quantization scheme as random variables and and describe their statisti-
cal moments. A uniform quantization system with additive dither signal, also called
non-subtractive dither (NSD), is defined as follows:

y = Q(x+ ν) = ∆bx+ ν

∆
+

1

2
c (4.5)

1 In contrast, mid-riser uniform quantization is defined as Q(x) = ∆bx/∆c+ 1/2. Since this quanti-
zation function cannot produce zero-valued outputs and our goal is to obtain a sparsifying quantization
scheme, we introduce mid-tread quantization here.

17



4 DITHERED UNIFORM QUANTIZATION

where the dither signal ν is drawn from a probability distribution with probability
density function (pdf) pν . The total error, or quantization error, is defined as the
difference of the system output and the system input:

ε = y − x = Q(x+ ν)− x. (4.6)

As we can see, the quantization error, is still dependent on the input. However, sampling
the dither signal from an appropriate probability distribution, the statistical moments
of the quantization error are decoupled from the input2. This allows us to describe these
moments for arbitrary input distributions. One can think of uniform quantization with
NSD as a one-dimensional grid with a randomly sampled offset for every incoming
value which is then moved to the nearest grid node. In the remainder of this section
we want to analyze the error moments induced by dithered uniform quantization using
appropriate dither distributions.

4.2.1 Appropriate Dither Distributions

According to [57], in order to decouple the first m moments of the quantization error of
a uniform quantization system with NSD from the system input, the dither signal has
to be drawn from a distribution that fulfills the following condition:

P(i)
ν

(
k

∆

)
= 0 ∀k ∈ Z0 and i = 0, 1, . . . ,m− 1 (4.7)

with ∆ being the quantization step size, Pν the characteristic function (cf) of the dither
signal, i.e. the Fourier transform of its pdf pν , and P(i)

ν its i-th derivative. Furthermore,
it was shown that when the above condition is fulfilled for a particular value of m, the
first m moments of the quantization error are given by

E[εm] =

bm
2
c∑

l=0

(
m

2l

)(
∆

2

)2l E[νm−2l]

2l + 1
(4.8)

which results in the following equations for the first two moments:

E[ε] = E[ν], (4.9)

E[ε2] = E[ν2] +
∆2

12
. (4.10)

As we can see, using an appropriate dither signal, the moments of the quantization
error are directly determined by the moments of the dither signal. This allows us to
control the error moments by the choice of dither signal. Moreover, for dither signals
that fulfill the above condition for m ≥ max(m1,m2), one can derive a general equation
for the joint error moments E[εm1

1 εm2
2 ], which is given in [57]. More importantly, if this

dither signal is sampled independently the joint error moments are uncorrelated:

E[εm1
1 εm2

2 ] = E[εm1
1 ]E[εm2

2 ]. (4.11)
2Alternatively, one could use subtractive dither (SD) where the quantization error and its moments

are entirely decoupled from the input signal. However, since for SD the dither signal is subtracted
again after decoding, the quantized values are almost never zero, which is unsuitable for a sparsifying
quantization scheme.
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Thus, using an independently sampled dither signal that fulfills the condition from
above for m ≥ 1, the quantization error of distinct input samples is uncorrelated:

cov(ε1, ε2) = E[ε1ε2]− E[ε1]E[ε2]

= E2[ε]− E2[ε]

= 0. (4.12)

Recall the three properties that we defined in the beginning of the chapter for the
desired stochastic quantization scheme: 1. Unbiasedness, 2. controllable error variance,
and 3. uncorrelated error for distinct input samples. Using a dither signal that has a
mean of zero, i.e. E[ν] = 0, and is sampled independently from a distribution that fulfills
the condition in equation 4.7 for m ≥ 2, we obtain a stochastic quantization function
that fulfills all three requirements. Property 1 and 3 follow directly from equations 4.9
and 4.12. Property 2 follows from equation 4.10 and the fact that the variance is equal
to the second moment in case the mean is zero. In the next subsection we introduce
such a dither distribution.

4.2.2 Triangular Dither

We refer to a dither signal that is independently sampled from a triangular pdf with a
mean of zero and an amplitude of 2∆ as triangular dither. It can be shown that using
such a dither distribution fulfills the condition from equation 4.7 for m = 2 and thus
renders the first two moments of the quantization error independent from the input
signal. Furthermore, as shown by [59], it is the only dither signal that fulfills this
condition while minimizing the second moment of the quantization error. Therefore,
triangular dither is an optimal choice for input-independent error mean and variance.
We can sample from such a triangular dither distribution by summing two independent
random samples from a rectangular pdf, also called uniform distribution, each with a
mean of zero and an amplitude of ∆.

ν = ν1 + ν2 with ν1, ν2 ∼ U(−∆

2
,
∆

2
). (4.13)

This follows from the fact that the summation of two independent random processes
convolves their pdfs and the convolution of the two rectangular pdfs mentioned here
precisely results in the desired triangular pdf, as illustrated in figure 4.2. Since a uniform
distribution U(−a, a) has second moment (2a)2/12, the triangular dither signal has second
moment

E[ν2] = E[ν2
1 ] + E[ν2

2 ] =
∆2

6
(4.14)

and using equations 4.9 and 4.10 we can show that the resulting quantization error has
first and second moment

E[ε] = 0, (4.15)

E[ε2] =
∆2

4
. (4.16)

It seems that we have found a good candidate for the dither distribution to use
in a uniform quantization scheme that we can leverage later in our quantized back
propagation algorithm. However, as we will see in the next subsections, there is an
alternative choice of dither signal that, despite not satisfying all the desired properties,
has some important advantages for the use in our method.
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Figure 4.2: Convolution of two zero-centered uniform distributions with amplitude ∆.
Figure from [59].

4.2.3 Uniform Dither

We refer to a dither signal that is independently sampled from a rectangular pdf with a
mean of zero and an amplitude of ∆ as uniform dither. This is precisely the distribution
we sampled from twice to obtain the triangular dither signal in the last subsection.
Uniform dither, as described here, fulfills the condition in equation 4.7 for m = 1 and
thus only renders the first moment of the quantization error independent from the input.
Therefore, the variance of the quantization error is still dependent on the input and
thus not directly controllable by the choice of quantization step size, as it is the case for
triangular dither. However, we found that the variance of the quantization error that
results from using a uniform dither signal is bounded by the error variance that results
from using triangular dither. We summarize this finding in the following conjecture
which we verify experimentally in appendix B.1.

Conjecture. Let Q be a mid-tread uniform quantization function with quantization
step size ∆

Q(x) = ∆b x
∆

+
1

2
c, (4.17)

and ν a random variable that follows a uniform distribution with a mean of zero and
amplitude equal to the quantization step size

ν ∼ U(−∆

2
,
∆

2
). (4.18)

Then, the quantization error of a uniform quantization system with non-subtractive
dither

ε = Q(x+ ν)− x (4.19)

has a second moment bounded by

E[ε2] ≤ ∆2

4
. (4.20)
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As stated by the conjecture above, given the same quantization step size, the vari-
ance of the quantization error induced by uniform dither is less than or equal to the
quantization error induced by triangular dither. Thus, applying uniform quantization
to the back propagation algorithm, uniform dither introduces less or equally much noise
variance to the training process. However, the noise that is actually induced has input-
dependent variance - the noise is modulated. Instead of controlling the exact variance
of the induced noise, we can only control the upper bound of the variance. This is a dis-
advantage since our desired quantization scheme should have controllable error variance
such that the method can adapt to a required noise scale for the resulting parameter
gradients, as motivated in section 2.4. However, input-dependent noise variance during
the back propagation algorithm, could also represent a helpful pre-conditioning of the
noise regarding the training procedure. As a result, it is not obvious whether the lower
but modulated noise variance induced by using uniform dither will generally be helpful
or not when applying this quantization scheme during the backward pass. Further-
more, not only the induced noise variance but also the induced sparsity is an important
criterion of the quantization scheme. As it will become clearer in the next section for
relevant input distributions uniform dither induces higher sparsity ratios but at the
same time much less noise variance as compared to triangular dither.

4.3 Induced Sparsity

The output sparsity of a dithered uniform quantization scheme is dependent on the input
and the dither distributions. Since, as we will see in the next chapter, the computational
benefits of QBP are dependent on the output sparsity of the quantizer, this property
is very important to our method. Thus in this section we want to analyze the induced
sparsity in general and also for input distributions that are relevant to our method.

In order to analyze the output sparsity of a dithered uniform quantization system
we first have to formalize the distribution of the values that are being quantized. These
values consist of the system inputs and the dither samples:

s = x+ ν (4.21)
y = Q(s) (4.22)

To describe the sparsity of the output y we first need to define the pdf of s. Since, the
value of s is given by the sum of two random variables, its pdf is the convolution of the
summand pdfs:

fs(s) = (fx ∗ fν)(s)

=

∫ ∞
−∞

fx(s− τ)fν(τ)dτ (4.23)

where fν is the pdf of the dither signal which is defined as

fνu(t) =

{
1
∆

if− ∆
2
≤ t ≤ ∆

2
,

0 otherwise,
(4.24)

for uniform dither and as

fνt(t) =

{
1
∆

(1− |t|
∆

) if −∆ ≤ t ≤ ∆,

0 otherwise.
(4.25)
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4 DITHERED UNIFORM QUANTIZATION

for triangular dither. Then, since due to the rounding operations all values of s in the
interval [−∆

2
, ∆

2
) are quantized to zero, we can define the probability of an output value

being zero based on the probability density of s as follows:

p(y = 0) =

∫ ∆
2

−∆
2

fs(s)ds. (4.26)

In order to evaluate the impact of the dither signal on the induced sparsity, we
make some assumptions about the input pdf fx. As we will see in the next chapter,
the pre-activation gradients during the backward pass are distributed according to a
zero-centered Laplace-like distribution. For our analysis we will therefore assume x
follows a zero-centered Laplace distribution. We determine the theoretically induced
sparsity by evaluating equation 4.26 numerically for different Laplace-distributed fx and
different quantization step sizes ∆. We also simulate the quantization of values drawn
from the Laplace distribution and measured the resulting sparsity and error variance
to confirm the theoretical results. Figure 4.3 shows exemplary results for a specific
Laplace distribution, and theoretically induced sparsity for other Laplace distributions
is shown in the appendix in figure C.1. We find that the use of uniform dither always

3 2 1 0 1 2 3
0.0

0.5

1.0

1.5

2.0
Input distribution

0.0 0.5 1.0 1.5 2.0
step size

0.2

0.4

0.6

0.8

sp
ar

sit
y

Compression ratio

uni calc
uni meas
tri calc
tri meas

0.0 0.5 1.0 1.5 2.0
step size

0.0

0.2

0.4

0.6

0.8

1.0
va

ria
nc

e
Error variance

uni
tri
bound

Figure 4.3: Sparsity (calculated and measured) and error variance of quantization with
input values sampled from a Laplace distribution with mean µ = 0 and scale b = 0.3
(histogram on the left), using uniform dither (uni) or triangular dither (tri).

induces higher sparsity for zero-centered Laplace distributions than using triangular
dither. Especially for large quantization step sizes, the use of uniform dither can lead
to high sparsity ratios. In the middle plot of figure 4.3 we see that the measured
sparsity coincides with the the theoretical results. Furthermore, the right plot shows a
significantly reduced error variance for uniform dither compared to triangular dither.
Together with the fact that the measured error variance induced by triangular dither is
given by ∆2/4 ("bound" in the plot), this confirms our theoretical discussion about the
induced error variances from the last sections.

Concluding the comparison between uniform and triangular dither, we have shown
that for relevant input distributions the use of uniform dither in a uniform quantization
scheme induces higher sparsity ratios and significantly lower error variance as compared
to triangular dither. As a result, despite its inferior ability to control the exact error
variance, uniform dither could potentially be the better choice for our method. In the
next chapter, we formally introduce Quantized Back Propagation and how it combines
the different concepts that we have discussed so far to efficiently train neural networks.
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5 Quantized Back Propagation
We introduce Quantized Back Propagation (QBP) which leverages quantization tech-
niques from signal processing in order to more efficiently train neural networks. In this
chapter we explain how our method unifies the concepts introduced so far to achieve
this goal.

5.1 Method Overview

When training neural networks the back propagation algorithm is used to efficiently
evaluate the gradients of the loss function for a given input by propagating local er-
rors through the network. Since up to 90% of the computing time for training fully-
connected neural networks is spent on the matrix multiplication operations [2], in this
method we focus on reducing the computational cost of these operations. Recall from
subsection 2.2.2 that for fully-connected neural networks, there are three matrix mul-
tiplications involved in the back propagation algorithm: One in the forward pass and
two in the backward pass. Altering the computations in the forward pass would also
change the activation values and the prediction error that is computed using the loss
function, and thus have multiple effects on the backward pass as well. These are more
difficult to analyze theoretically and thus for this method we focus on the two matrix
multiplications in the backward pass. Both matrix multiplications in the backward pass
involve the pre-activation gradients. In order to save operations, we apply a quantiza-
tion function that compresses these gradients such that they exhibit a high degree of
sparsity. We can then exploit this sparsity to omit operations when computing the ma-
trix multiplications as described in section 2.3. The altered equations for the backward
pass are given by

dzl = dal � f ′(zl), (5.1)

dW l = d̃zl(al−1)T , (5.2)

dal−1 = (W l)T d̃zl. (5.3)

with l being the current layer and d̃zl the matrix of quantized pre-activation gradients.
We use a uniform quantization function with non-subtractive uniform dither, as de-
scribed in chapter 4, to element-wise quantize the values in the pre-activation gradient
matrix:

d̃zlik = Q(dzlik + νlik) (5.4)

= ∆lbdz
l
ik + νlik
∆l

+
1

2
c (5.5)

with ∆l being the quantization step size, which can be chosen independently for in every
layer, and νlik the dither signal sampled independently from a uniform distribution with
a mean of zero and an amplitude equal to the quantization step size:

νlik ∼ U(−∆l

2
,
∆l

2
). (5.6)
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5 QUANTIZED BACK PROPAGATION

The motivation behind using this particular stochastic quantization function is that it
induces a high sparsity on the pre-activation gradients, which results in high compu-
tational savings, and that the resulting weight gradients are unbiased and exhibit a
bounded variance that can be controlled by the quantization step sizes. In the next
sections we will go into more detail about these properties.

5.2 Uniform Quantization and Sparsity

In QBP we quantize the pre-activation gradients using a dithered uniform quantization
scheme. However, uniform quantization is not necessarily a sparsifying quantization
function, as compared to the top-k algorithm in [2] or Dropout [37]. Only input values
that lie in the interval [−∆/2,∆/2) are quantized to zero. Thus, uniform quantization can
only achieve a high degree of output sparsity for input distributions that are centered
around zero and using a sufficiently large quantization step size. It turns out that the
pre-activation gradient values in ReLU-activated feed-forward networks are distributed
according to a Laplace-like distribution with a mean of approximately zero. As we
showed in section 4.3, for such input distributions, uniform quantization with uniformly
distributed dither can achieve very high sparsity ratios using larger quantization step
sizes. Figure 5.1 shows the Laplace-like distribution of the pre-activation gradients
during training. More snapshots of pre-activation gradient distributions can be seen in
appendix C.2.
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Figure 5.1: Pre-activation gradient distributions during training of a fully-connected
ReLU-activated neural network with two hidden layers (500 neurons each) on MNIST.

5.3 Computational Cost

The per-layer complexity of QBP differs from regular back propagation in the following
steps.

• Quantize dzl element-wise - O(nlm).

• Convert d̃zl to the CSR memory format - O(nlm).

• Compute dW l leveraging sparse matrix multiplication - O(||d̃zl||0nl−1 + nlnl−1).

• Compute dal−1 leveraging sparse matrix multiplication -O(||d̃zl||0nl−1 + nl−1m+ nl).

24



5 QUANTIZED BACK PROPAGATION

We discussed the complexity of sparse matrix multiplications in section 2.3. Note that
using the CSC memory format instead of CSR would be beneficial for dense-sparse
multiplication but not for sparse-dense. However, the choice of memory format would
not make a difference in the overall complexity of the algorithm, which is given by

EQBP = O(||d̃zl||0nl−1 + nlnl−1 + nlm+ nl−1m). (5.7)

When we compare the time complexities of QBP and BP, which is O(nlnl−1m) as
discussed in subsection 2.2.3, we can easily see that our method is asymptotically more
efficient as long as ||d̃zl||0 < nlm, which means as long as the quantized pre-activation
gradients exhibit at least some sparsity. For high sparsity rates, we can achieve linear
reduction in complexity.

5.4 Error Statistics

In this section we investigate whether QBP computes unbiased gradient estimates with
bounded error variance, as desired. To understand how the quantization error induced
on the pre-activation gradients is propagated through the network, we model it as
additive noise:

d̃zl ≡ dzl + δpdz
l + δqdz

l. (5.8)

where δpdzl denotes the propagated noise and δqdz
l denotes the noise added through

quantization in the same layer. Then, the noise contained in the weight gradients, which
is also the error of the method, is given by

δdW l = d̃W l − dW l (5.9)

=
1

m
(δpdz

l + δqdz
l)(al−1)T . (5.10)

Note that in the above formula we make the averaging of the weight gradients over the
batch size, which is due to the use of SGD, explicit. We can now establish the following
theorem regarding the statistical moments of the weight gradient noise:

Theorem. Let δqdzl be unbiased and uncorrelated quantization noise

E[δqdz
l
ik] = 0 ∀ i, k, l (5.11)

E[δqdz
l
ik δqdz

l′

i′k′ ] = 0 ∀ i 6= i′ ∨ k 6= k′ ∨ l 6= l′ (5.12)

which is injected into the pre-activation gradients during back propagation. Then, the
first and second moment of the induced gradient noise are given by

E[δdW l
ij] = 0 ∀ i, j, l (5.13)

and

E[(δdW l
ij)

2] =
1

m2

m∑
k=1

(
f ′(alik)

2 E[(δdalik)
2] + E[(δqdz

l
ik)

2]
)(
al−1
jk

)2
, (5.14)

with

E[(δdal−1
jk )2] =

nl∑
i=1

(
W l
ij

)2
(
f ′(alik)

2 E[(δdalik)
2] + E[(δqdz

l
ik)

2]
)
. (5.15)
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5 QUANTIZED BACK PROPAGATION

We proof this theorem formally in appendix A. Consequently, if we apply an unbiased
quantization scheme with uncorrelated quantization error to the pre-activation gradients
during back propagation, we can guarantee that the resulting weight gradient estimates
are unbiased and that the variance of the contained noise can be determined by the
variance propagation formulas in equations 5.14 and 5.15. Then, it is trivial to show
that using uniform quantization with uniform dither, as described in section 4.1, leads to
unbiased weight gradient estimates that exhibit a bounded noise variance. We formalize
this insight in the following corollary.

Corollary. Given a quantization scheme as described in section 5.1, the first and second
moment of the induced weight gradient noise are given by

E[δdW l
ij] = 0 ∀ i, j, l (5.16)

and

E[(δdW l
ij)

2] ≤ 1

m2

m∑
k=1

f ′(alik)
2 E[(δdalik)

2](al−1
jk )2 +

∆2

4m2
||al−1

j∗ ||2, (5.17)

with

E[(δdal−1
jk )2] ≤

nl∑
i=1

(W l
ij)

2f ′(alik)
2 E[(δdalik)

2] +
∆2

4
||W l

∗j||2. (5.18)

The variance bound in equations 5.17 and 5.18 follows from the fact that uniform
quantization with uniform dither induces quantization noise with bounded variance, as
described in the conjecture in subsection 4.2.3, and that all other terms in equations 5.14
and 5.15 are positive. Given the corollary from above, we have shown that our method
fulfills the desired properties of unbiased noise with controllable variance. Note that the
variance equation 5.14 for the weight gradient noise contains the factor 1/m2 and also
a sum over m terms. As a result, the error variance induced by this method decreases
linearly with the batch size. Note that when using triangular dither instead of uniform
dither, the induced noise variance on the weight gradients is not bounded as we have
shown in the corollary but it is exactly determined by the equations in the theorem.

5.5 Adaptive Quantization

As discussed in section 2.4, when training neural networks the ideal noise scale for the
weight gradients in the different layers is not yet generally known. However, if insights
about the theoretical noise scale or approximations of it become available through more
research, QBP can be used to induce such a desired noise scale. Leveraging the theorem
for bounded error variance that we introduced in the last section, we can design an
algorithm that adaptively chooses the quantization step size in each layer to control the
variance of the induced weight gradient noise.

Corollary. Given a quantization scheme as described in section 5.1, let

E[(δdW l
ij)

2] ≤ σl ∀ i, j (5.19)
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5 QUANTIZED BACK PROPAGATION

be the desired variance bound for the induced weight gradient noise in layer l. Then,
this bound holds when the quantization step size is chosen as

∆l = min
i,j

Γij (5.20)

with Γ ∈ IRnl×nl−1 and

Γij =

√√√√4m2σl − 4
∑m

k=1 f
′(alik)

2 E[(δdalik)
2](al−1

jk )2

||al−1
j∗ ||2

. (5.21)

The definition of Γij follows from rearranging equation 5.17 for ∆l with E[(δdW l
ij)

2] = σl

and thus represents the required quantization step sizes such that noise variance σl
is induced on any weight gradient in layer l. Since the induced noise variance is a
monotonically increasing function of ∆l, by choosing ∆l as the minimum of the step
sizes in Γij we ensure that the maximum induced noise variance is equal to σl. This
algorithm can be used to mimic noise that is artificially added to the weight gradients,
such that QBP can be adapted to induce a desired noise scale on the weight gradients
and thus compare to approaches like SGLD [33]. Note that because of the necessary
variance propagation, the asymptotic complexity of such an algorithm is equivalent
to regular back propagation. We leave the efficient approximations of the variance
formulas for future work.

An alternative strategy for adaptive quantization would be to choose the quanti-
zation step size such that a desired sparsity constraint is fulfilled. For this, in ev-
ery iteration, the distribution of pre-activation gradients is approximated by fitting a
Laplace distribution to values. Then, the integrals from section 4.3 are solved to find
the quantization step size that induces the desired number of zero-valued elements.
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6 Experiments
In this chapter we present numerical experiments we conducted to investigate the prop-
erties of QBP. We train fully-connected neural networks on different image classification
tasks and measure the error statistics and the computational benefit of our method as
well as the generalization performance of the resulting networks.

6.1 Experimental Settings

The fully-connected networks in our experiments have two hidden layers of 500 units
each. We train on three different benchmark datasets for image classification. The
MNSIT digit recognition task [61] encompasses 60,000 training and 10,000 test images
of handwritten digits, each gray-scale and 28 by 28 pixels. The corresponding labels
assign the images to one of the ten digit classes. The CIFAR10 dataset [62] consists
of 50,000 training and 10,000 test images of vehicles and animals that belong to ten
different classes such as "automobile", "cat" and "horse". The images are 32 by 32
pixels and have RGB color channels. The SVHN dataset [63] encompasses around
73,000 training and around 26,000 test images of house number photographs that were
cropped to contain single digits, and thus each belong to one of the ten digit categories.
We use either SGD or Adam [64], a variant of SGD with adaptive learning rate that
leverages exponential averaging of past gradients for the weight updates. For the hidden
layers in the network we use a ReLU activation function, for the output layer we use the
softmax function to predict class probabilities. We use the cross entropy loss function,
which is common for classification tasks. To measure the generalization performance
we calculate the prediction accuracy of the network based on a dedicated test dataset.
This test accuracy is calculated using the model that attained the highest validation
accuracy throughout the training procedure. The validation accuracy is measured on
a dedicated set of 5000 training samples that were not included during training - the
validation set. For MNIST, we train the networks for 25 passes through the training set
(epochs) and use a batch size of 10, for CIFAR10 and SVHN we train for 50 epochs with
a batch size of 50. We use a constant quantization step size for most of the experiments
and scale the pre-activation gradients by the batch size before quantizing them.

6.2 Error Statistics

In order to verify the error statistics of our method we train a neural network with QBP
on the MNIST dataset. We use SGD with a learning rate of η = 10−3 and a constant
quantization step size of ∆l = 0.1. Recall that the error of our method is given by the
difference between the weight gradients computed by QBP and the weight gradients
computed by regular back propagation (BP). In order to compute the error statistics, we
sample from the distribution of weight gradient estimates at specific training iterations
by performing additional QBP backward passes for the current training batch, which
each gives us the gradients for every weight in the network. Then from these estimates
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6 EXPERIMENTS

we subtract the true weight gradients computed by a regular BP backward pass for the
same training batch. The resulting error samples represent the error distribution at a
specific time in the training procedure. We usually use 50 additional QBP backward
passes, which means we approximate the error distribution using 50 samples. We can
then compute the mean and variance of these gradient error samples for the single
weights in the network, which we call error means and error variances. To avoid
inspecting the error of every weight gradient individually and also to be able to track the
error statistics over the course of the training procedure, we compute "second-order"
statistics. This means, that we compute the mean, the variance, and the maximum
value of the error means and error variances over all weight gradients in a certain layer.
Using these second-order statistics we can then infer if our method is unbiased and
has bounded variance all weight gradients in individual layers. We compute these error
statistics every 2000 training iterations. In the figures, we refer to these measures as, for
example, "dW2 err var mean" for the mean of error variances for all weight gradients
in layer two. We refer to the weights connecting the input layer to the first hidden layer
as layer one (784x500 weights), to the weights connecting the two hidden layers as layer
two (500x500 weights) and to the weights connecting the second hidden layer with the
output layer as layer three (500x10 weights).

6.2.1 Mean

To show that QBP with uniform dither (QBP-UD) actually produces unbiased weight
gradient estimates we compare it to QBP without dither signal (QBP-ND), which means
that the pre-activation gradients are quantized using regular, deterministic uniform
quantization, as described in section 4.1. The findings are illustrated in figure 6.1,
where we exemplarily show the second-order statistics of the error means in the second
layer. In the top row of the figure, we can see that the error mean is on average lower
for QBP-UD than for QBP-ND (left plot) and that the error means of the single weight
gradients deviate less from this average (right plot). The bottom row of the figure
illustrates the same measurements for QBP-UD with a different number of samples for
the computation of the error statistics. We can see here that the error means decrease
for an increased sample count. We find very similar results for the other layers of the
network, as can be seen in the appendix in figures C.3 and C.4. To summarize, the use
of uniform dither in our method results in a significantly lower error mean, as compared
to using no dither signal. Also the error mean is even lower for an increased number of
error samples. Since the mean is an approximation of the expected value we conclude
that the error of QBP-UD does indeed go to zero and the method is therefore unbiased.

6.2.2 Variance

Similarly to the error mean we also analyze the error variance of QBP. We compute
the expected error variance induced by QBP with triangular dither (QBP-TD) and the
variance bound for QBP-UD using the equations from section 5.4 and refer to it as
the "calculated" error variances. We compare these calculated error variances to the
actually induced ones for both methods and illustrate our findings in figure 6.2 We find
that for uniform dither the maximum of the calculated error variance bound is always
larger than the maximum of the induced error variance (top left plot). For triangular
dither the calculated error variance is on average roughly equal to the induced one
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Figure 6.1: Fully-connected neural network with two hidden layers (500,500) trained on
MNIST using QBP with constant quantization step size ∆l = 0.1. Plots show second-
order statistics (mean and variance) over weights in second layer of weight gradient error
means. Top row compares error mean using either no dither signal (QBP-ND) or non-
subtractive uniform dither (QBP-UD). Bottom row compares error mean computed
based on different sample sizes. The x-axis represents the training iterations. An
exponential moving average with β = 0.8 was used for curve smoothing.

(top right plot). Furthermore, we find that doubling the batch size roughly halves the
induced error variance for both methods (bottom plots).

From the analysis presented for mean and variance of the weight gradient error
we can conclude that the gradient estimates computed by QBP fulfill the expected
properties when the method is used to train neural networks on a benchmark dataset.
We found that the gradient estimates are indeed unbiased, that the variance bound for
the error induced by QBP with uniform dither holds and that the variance of the error
induced by QBP with triangular dither matches the expected variance. This confirms
our theoretical derivations in section 5.4.

6.3 Quality vs. Efficiency

So far we have analyzed the error statistics of QBP. However, more important for the
practical application of this method is how well the trained networks generalize and
how much computation can be saved by exploiting the sparsity induced by quantiza-
tion. While strong quantization leads to high sparsity and thus to a large computational
benefit, it also adds a lot of noise to the weight gradients which can lead to a desta-
bilization of the training process and therefore to networks that generalize badly. To
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Figure 6.2: Fully-connected neural network with two hidden layers (500,500) trained on
MNIST using QBP with constant quantization step size ∆l = 0.1 and either uniform
(QBP-UD) or triangular dither (QBP-TD). Plots show second-order statistics (mean
and max) over weights in second layer of either calculated or measured weight gradient
error variances. Calculated error variances are obtained from variance formulas in
section 5.4. The x-axis represents the training iterations. An exponential moving
average with β = 0.8 was used for curve smoothing.

investigate this trade-off we test different choices for the quantization step size. Since
the sparsity ratio in the pre-activation gradients directly determines the computational
benefit of QBP, as discussed in section 5.3, we measure the averaged sparsity over layers
and training iterations in order to approximate the efficiency gain of the method.

6.3.1 Comparison of Dither Signals

In order to analyze the impact of different dither signals we train a neural network on
the MNIST dataset with QBP and either no dither signal, uniform dither or triangular
dither. We use SGD with a learning rate of η = 10−3 and different constant quantization
step sizes ∆l = s. We illustrate our findings in figure 6.3.

Undithered Quantization

We found that using no dither signal works well for smaller quantization step sizes and
results in generalization-sparsity ratios roughly comparable to uniform dither. However,
for larger step sizes, we find that networks trained without dither signal do not converge
to a good solution and thus exhibit drastically reduced generalization performance. We
can see from the left plot that, for this experiment, the performance degradation of
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undithered quantization starts for quantization step sizes around s = 1. For uniform
dither, this drastic performance degradation does not occur even for much larger step
sizes. We conjecture that the performance degradation for undithered quantization is
due to the biased quantization error which is less pronounced for smaller quantization
step sizes. This is in line with the classical model of quantization, which we described
in section 4.1, and which states that for small enough quantization step sizes relative
to the input the quantization error is unbiased even without the use of a dither signal.
We thus compared the error mean induced by using no dither for the quantization step
sizes where the performance degradation begins and found, as illustrated in figure 6.4,
that for s = 1 the induced error mean is much larger than for s = 0.33, with the later
still being comparable to the error mean induced by uniform dither. We can conclude
that to achieve high computational savings, the use of dither is necessary to keep the
quantization error unbiased and thus the training procedure stable.

Triangular Dither

We also found that the use of triangular dither, when compared to uniform dither,
leads to a decrease in generalization performance and a drastic decrease in induced
sparsity for the same quantization step sizes. The drastic decrease in sparsity confirms
our simulations for Laplace-like input distributions from section 4.3. Furthermore, we
explain the weaker generalization with the significantly higher amount of noise variance
triangular dither injects into the weight gradients computed by QBP, which we also
showed experimentally in subsection 6.2.2. The noise modulation that results from us-
ing uniform dither, which we discussed in subsection 4.2.3, seems to either not be too
disadvantageous for the training procedure or is actually beneficial. This noise modu-
lation could represent a helpful pre-conditioning of the gradient noise that is caused by
the back propagation algorithm itself. In fact, as we can see in figure 6.2, the error vari-
ance induced by using triangular dither is increasing throughout the training procedure
whereas the error variance induced by using uniform is decreasing. Potentially, this is
due to the decreasing amplitude of the pre-activation gradients during training, which
then affects the input-dependent error variance induced by using uniform dither, but
not the input-independent variance induced by using triangular dither. Such an anneal-
ing of the noise contained in the weight gradients is also recommended by approaches
such as SGLD [33] which add controlled artificial noise to the weight gradients during
training to converge to better solutions with higher probability. Taken together, these
findings show that uniform dither represents a superior choice of dither signal for QBP
as compared to triangular dither. Also, these findings suggest that QBP with uniform
dither does indeed add noise to the weight gradients that is similar to the noise added
by SGD - it is unbiased and exhibits a pre-conditioning of the variance that is beneficial
for the training procedure.

6.3.2 Comparison with meProp

In order to analyze the quality-efficiency trade-off we compare our method with regular
BP and with meProp [2]. We use Adam with a base learning rate of η0 = 10−4 for BP
and QBP, and η0 = 10−3 for meProp, as it is also reported in their paper. The other
hyperparameters for Adam are kept to their default values. We evaluate the different
methods on the MNIST, CIFAR and SVHN datasets. Figure 6.5 illustrates the quality-
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Figure 6.3: Fully-connected neural network with two hidden layers (500,500) trained on
MNIST using QBP with constant quantization step sizes ∆l = s and either no dither
signal (QBP-ND), uniform dither (QBP-UD) or triangular dither (QBP-TD). Sparsity
is averaged over layers and training iterations. Training results represented by points
in the left plot correspond to training results in the right plot.

efficiency ratios on the different datasets. We find that on MNIST, QBP can induce an
average sparsity in the pre-activation gradients of around 99% while still obtaining the
same accuracy as regular back propagation, and around 77% and 92% on CIFAR10 and
SVHN respectively. meProp however cannot recover the full accuracy of BP for any of
the tasks. We summarized results obtained on the MNIST dataset in table 6.1.

Algorithm Hyperparameter Test accuracy (%) Average sparsity (%)
BP - 98.13± 0.133 -
QBP-UD ∆l = 1 98.14± 0.156 99.15± 0.029
meProp k = 50 97.89± 0.171 94.11± 0.033

Table 6.1: Results from training a fully-connected neural network with two hidden
layers (500,500) on the MNIST dataset using different variants of the back propagation
algorithm. Sparsity contained in the quantized pre-activation gradients is averaged over
layers and training iterations.

6.4 Adaptive Quantization

To investigate the ability of our method to control the noise induced on the parameter
gradients, we train a fully-connected network on MNIST as described in section 6.1 with
QBP and uniform dither, and adaptively choose the quantization step size according
to the algorithm from section 5.5 such that a desired variance bound of σlmax = 0.01 is
met. Figure 6.6 illustrates the resulting error statistics of the weight gradients in the
first layer at iteration 2000 during the training procedure. As we can see, most weight
gradients have an error mean of zero and an error variance below the desired bound.
Less than 0.4% of the weight gradients have error variance higher than σlmax. Inspecting
the error distributions at different points of time during training yields similar results.

From these experiments, we can conclude that QBP can be applied to induce a
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Figure 6.4: Fully-connected neural network with two hidden layers (500,500) trained on
MNIST using QBP with two choices for the constant quantization step size ∆l = s and
either no dither signal (QBP-ND) or uniform dither (QBP-UD). Plots show second-
order statistics (mean and max) over weights in second layer of weight gradient error
means. The x-axis represents the training iterations. An exponential moving average
with β = 0.8 was used for curve smoothing.

desired noise scale in the weight gradients. Therefore, given knowledge about an opti-
mal noise scale for stochastically training neural networks, our method uses adaptive
quantization to achieve the best possible trade-off between efficiency and generalization
performance of the resulting models.

34



6 EXPERIMENTS

94 95 96 97 98 99 100
% sparsity

96.5

97.0

97.5

98.0

%
 t

e
st

 a
cc

BP

QBP-UD

meProp

82.5 85.0 87.5 90.0 92.5 95.0 97.5
% sparsity

40

42

44

46

48

50

52

54

%
 t

e
st

 a
cc

BP

QBP-UD

meProp

88 90 92 94 96 98
% sparsity

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

%
 t

e
st

 a
cc

BP

QBP-UD

meProp

Figure 6.5: Fully-connected neural network with two hidden layers (500,500) trained on
MNIST, CIFAR10 and SVHN using either regular back propagation (BP), QBP with
uniform dither (QBP-UD) or meProp [2]. For QBP different choices for a constant
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each configuration. Points show mean performance with standard deviation indicated
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35



7 Conclusion
The research question for this thesis was how to use quantization to efficiently train
neural networks without loss in generalization performance or with as little as possi-
ble. Our approach to this problem was to leverage a stochastic quantization scheme
during the back propagation algorithm that induces high sparsity and injects noise into
the weight gradients with similar characteristics as noise induced by SGD. We motivate
these noise characteristics with the conjecture that we discuss in section 2.4, which states
that SGD works so well for training neural networks because the resulting weight gradi-
ent estimates are unbiased and exhibit noise variance that is well pre-conditioned to the
optimization landscape. To implement this approach we make use of dithered uniform
quantization and exploit the resulting sparsity in the quantized pre-activation gradients
by computing efficient sparse matrix multiplications. We prove that the resulting weight
gradient estimates are unbiased and exhibit controllable noise variance, as stated more
generally by our theorem in section 5.4. In our experiments we verify that these noise
statistics are aligned with our theoretical predictions when we apply our method in
practice. We demonstrate that, as conjectured previously, unbiased gradient estimates
are important for good generalization-efficiency trade-offs by outperforming determin-
istic approaches, which we illustrate in figures 6.3 and 6.5. We also show that, similarly
to SGD, our method provides a useful noise pre-conditioning by comparing dither sig-
nals experimentally in subsection 6.3.1. Furthermore, our method can exhibit noise
scales with arbitrary bounds by adaptive quantization, as demonstrated in section 6.4,
and therefore in principle presents an optimal compromise between generalization and
efficiency. In conclusion, we established a novel framework for stochastic quantization
with controlled statistical properties during neural network training and leveraged this
framework to achieve state-of-the-art results on multiple benchmark datasets.
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8 Future Work
We introduced a method that leverages stochastic quantization to reduce the com-
putational cost of training neural networks while exhibiting desired error statistics.
However, there are still many unanswered questions regarding the practical applica-
tions of this method and its generalization to different network architectures as well
as potential theoretical improvements. More research is necessary to find the optimal
noise scale for stochastically training neural networks. Given efficient approximations
of the propagated variances, our method could then be used to meet this noise scale
while maximally increasing the training efficiency. Furthermore, stochastic quantiza-
tion of the pre-activation gradients can be compared to regularization techniques such
as dropout and data augmentation, which also aim to achieve better generalizing net-
work models. It would be interesting to see if gradient noise injected by our method
exhibits similar properties to these successful and commonly used heuristics. A poten-
tial advancement of our method is to also apply the quantization scheme to the other
matrices involved in the backward pass - the weight matrix and the input gradients - to
leverage even more efficient sparse-sparse matrix multiplications. Another possibility
is the additional quantization of the weight matrix and the activation matrix in the
forward pass in order to reduce the computational cost in both forward and backward
pass. However, this would complicate the calculation of the induced error variance
because the loss signal would change and so would the propagated gradients. More
future work should also be directed at applying stochastic quantization to more types
of network architectures. For example, this work can be easily applied to recurrent
neural networks (RNNs) since they usually consist of fully-connected layers as well and
thus define a similar backward pass as discussed here. Since convolution operations can
be modeled as matrix multiplications [65], our method transfers easily to convolutional
neural networks (CNN). Moreover, this work can be applied to settings of distributed
training where the noise contained in the weight gradients can be leveraged for more
efficient communication between clients.
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A Error Statistics of Quantized Back Propa-
gation

In this chapter we proof the theorem given in section 5.4.

A.1 Error Propagation

We model the additive quantization noise contained in the pre-activation gradients
during the backward pass as

d̃zl = dzl + δpdz
l + δqdz

l (A.1)

with δqdzl being the noise induced by quantization in the current layer and δpdzl the
noise induced by quantization in upper layers. Then, the noise contained in the weight
gradients is given by

δdW l = d̃W l − dW l (A.2)

=
1

m
(δpdz

l + δqdz
l)(al−1)T . (A.3)

Analogously, the noise contained in the propagated activation gradients is given by

δdal−1 = d̃al−1 − dal−1 (A.4)
= (W l)T (δpdz

l + δqdz
l). (A.5)

and thus the propagated noise in the pre-activation gradients is

δpdz
l = f ′(al)� d̃al − dzl

= f ′(al)� δdal. (A.6)

Note that there is no noise propagated from the loss function

δdaL = 0 (A.7)

and thus

E[δdaLik] = E[(δdaLik)
2] = 0 ∀ i, k. (A.8)

A.2 Error Mean

Let the first moment and the joint first moment of the quantization error be given by

E[δqdz
l
ik] = 0 ∀ i, k, l, (A.9)

E[δqdz
l
ik δqdz

l′

i′k′ ] = 0 ∀ i 6= i′ ∨ k 6= k′ ∨ l 6= l′. (A.10)
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Then, using equations A.3, A.6 and A.9, it is straight-forward to describe the mean of
the parameter gradient error as follows:

E[δdW l
ij] =

1

m

∑
k

(E[δpdz
l
ik] + E[δqdz

l
ik])a

l−1
jk

=
1

m

∑
k

f ′(alik)E[δdalik]a
l−1
jk (A.11)

As we can see from equation A.11, δdW l depends on δdal−1 which we spell out similarly
using equations A.5, A.6 and A.9:

E[δdal−1
jk ] =

∑
i

W l
ij(E[δpdz

l
ik] + E[δqdz

l
ik])

=
∑
k

W l
ijf
′(alik)E[δdalik] (A.12)

From equation A.8, we can follow

E[δdalik] = 0 ∀ i, k, l, (A.13)

and thus also
E[δdW l

ij] = 0 ∀ i, j, l. (A.14)

A.3 Error Variance

Assume again that the first and joint first moment of the quantization error is zero, as
stated in the last section. Then, to derive the second moment for the weight gradient
error we first derive the second moment for the propagated activation gradient. We
expand the second moment of δdal−1 using equations A.5 and A.6.

E[(δdal−1
jk )2] = E

[(∑
i

W l
ij(f

′(alik)δda
l
ik + δqdz

l
ik)
)2]

=
∑
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l
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+ f ′(ali′k)E[δqdz
l
ik δda

l
i′k] + E[δqdz

l
ik δqdz

l
i′k]
)

(A.15)

To further simplify this equation, in the following we investigate the joint means of the
noise terms. The joint mean between the propagated noise and the quantization noise
can be written as

E[δdalik δqdz
l
i′k] = E

[∑
h

W l+1
hi

(
f ′(al+1

hk )δdal+1
hk + δqdz
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]
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∑
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hk )E[δdal+1
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l
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)

=
∑
i
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′(al+1
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hk δqdz
l
i′k]

= 0 (A.16)
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using equations A.5, A.6 and A.10, and where in the last line we used a similar reasoning
as in the last section, namely that the equation unrolls until it includes the last layer
l = L for which the propagated noise is zero and thus

E[δdaLhk δqdz
l
jk] = 0 ∀ h, j, k, l. (A.17)

Now, using equations A.10 and A.16 we can simplify equation A.15.
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l
i′j

(
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2]
)

(A.18)

For the last line we unrolled the gradients again to the last layer such that the term with
δi 6=i′ vanishes. Finally, using equations A.3, A.10 and A.16 we can derive the second
moment of the weight gradient noise very similarly to E[(δdW l

ij)
2].
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Equations A.14, A.18 and A.19 resemble the statements made in the theorem.
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B Additional Experiments

B.1 Uniform Dither Variance Bound

In order to investigate the error variance induced by dithered uniform quantization with
uniform and triangular dither, we simulate the quantization of values that are sampled
from different probability distributions. In every run we sample a matrix of 10,000
values from the respective distribution, quantize them using a given quantization step
size and compute the quantization error for every element. We do this for 1,000 runs
and compute the error variance for every element in the matrix. In the bottom row
of figure B.1 we illustrated the histogram of error variances over the elements in the
matrix for different input distribution. We can see that for every distribution, the error
variances induces by the use of uniform dither are bounded by ∆2/4, which is also the
mean error variance when using triangular dither. Here, we used the quantization step
size ∆ = 1. However, we find very similar results for other choices of quantization
step size. This confirms our conjecture about the bounded error variance induced by
uniform quantization with uniform dither, as described in subsection 4.2.3.
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Figure B.1: Simulations of applying dithered uniform quantization with uniform dither
signal to different input distributions. Top row shows input distribution input samples
are drawn from in each iteration. Middle row shows quantization output distribution
exemplarily for first iteration. Bottom row shows quantization error variances over
iterations as histograms.
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C Additional Figures

C.1 Uniform Quantization Sparsity
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Figure C.1: Theoretical sparsity induced by uniform quantization with either uniform
dither (uni) or triangular dither (tri), for different quantization step sizes, on input
samples drawn from different zero-centered Laplace distributions.
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C.2 Pre-Activation Gradient Distributions
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Figure C.2: Pre-activation gradient distributions at different snapshots during training
of a fully-connected ReLU-activated neural network with two hidden layers (500 neurons
each) on the MNIST image classification dataset.
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C.3 QBP Error Statistics
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Figure C.3: Statistics for mean of weight gradient error when using QBP with constant
step size ∆l = 0.1 and either no dither or uniform dither.
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Figure C.4: Statistics for mean of weight gradient error when using QBP with constant
step size ∆l = 0.1, uniform dither and either using 10 error samples or 50 error samples.
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